Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Eur Phys J Spec Top ; 232(5): 535-546, 2023.
Article in English | MEDLINE | ID: covidwho-2243542

ABSTRACT

The purpose of the current work is to provide the numerical solutions of the fractional mathematical system of the susceptible, infected and quarantine (SIQ) system based on the lockdown effects of the coronavirus disease. These investigations provide more accurateness by using the fractional SIQ system. The investigations based on the nonlinear, integer and mathematical form of the SIQ model together with the effects of lockdown are also presented in this work. The impact of the lockdown is classified into the susceptible/infection/quarantine categories, which is based on the system of differential models. The fractional study is provided to find the accurate as well as realistic solutions of the SIQ model using the artificial intelligence (AI) performances along with the scale conjugate gradient (SCG) design, i.e., AI-SCG. The fractional-order derivatives have been used to solve three different cases of the nonlinear SIQ differential model. The statics to perform the numerical results of the fractional SIQ dynamical system are 7% for validation, 82% for training and 11% for testing. To observe the exactness of the AI-SCG procedure, the comparison of the numerical attained performances of the results is presented with the reference Adam solutions. For the validation, authentication, aptitude, consistency and validity of the AI-SCG solver, the computing numerical results have been provided based on the error histograms, state transition measures, correlation/regression values and mean square error. Supplementary Information: The online version contains supplementary material available at 10.1140/epjs/s11734-022-00738-9.

2.
The European physical journal Special topics ; : 1-12, 2023.
Article in English | EuropePMC | ID: covidwho-2169181

ABSTRACT

The purpose of the current work is to provide the numerical solutions of the fractional mathematical system of the susceptible, infected and quarantine (SIQ) system based on the lockdown effects of the coronavirus disease. These investigations provide more accurateness by using the fractional SIQ system. The investigations based on the nonlinear, integer and mathematical form of the SIQ model together with the effects of lockdown are also presented in this work. The impact of the lockdown is classified into the susceptible/infection/quarantine categories, which is based on the system of differential models. The fractional study is provided to find the accurate as well as realistic solutions of the SIQ model using the artificial intelligence (AI) performances along with the scale conjugate gradient (SCG) design, i.e., AI-SCG. The fractional-order derivatives have been used to solve three different cases of the nonlinear SIQ differential model. The statics to perform the numerical results of the fractional SIQ dynamical system are 7% for validation, 82% for training and 11% for testing. To observe the exactness of the AI-SCG procedure, the comparison of the numerical attained performances of the results is presented with the reference Adam solutions. For the validation, authentication, aptitude, consistency and validity of the AI-SCG solver, the computing numerical results have been provided based on the error histograms, state transition measures, correlation/regression values and mean square error. Supplementary Information The online version contains supplementary material available at 10.1140/epjs/s11734-022-00738-9.

3.
Journal of Mathematics ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2108385

ABSTRACT

The motive of the current work is related to solving the coronavirus-based mathematical system of susceptible (S), exposed (E), infected (I), recovered (R), overall population (N), civic observation (D), and cumulative performance (C), called as SEIR-NDC. The numerical solutions of the SEIR-NDC model are presented by using the computational framework of artificial neural networks (ANNs) together with the swarming optimization procedures aided with the sequential quadratic programming. The swarming procedure based on the particle swarm optimization (PSO) works as a global search, while the sequential quadratic programming (SQP) is used as a local search algorithm. A merit function is constructed by using the nonlinear dynamics of the SEIR-NDC mathematical system based on its 7 classes, and the optimization of the merit function is performed through the PSOSQP. The numerical expressions of system are accessible with the ANNs using the PSOSQP optimization with 30 variables. The correctness of the stochastic computing scheme performances is verified by using the comparison of the obtained performances of the mathematical SEIR-NDC system and the reference Runge–Kutta scheme. Furthermore, the graphical illustrations of the performance indices, absolute error, and convergence curves are derived to validate the robustness of the proposed ANN-PSOSQP approach for the mathematical SEIR-NDC system.

4.
Eur Phys J Plus ; 137(3): 334, 2022.
Article in English | MEDLINE | ID: covidwho-2088887

ABSTRACT

In this study, modeling the COVID-19 pandemic via a novel fractional-order SIDARTHE (FO-SIDARTHE) differential system is presented. The purpose of this research seemed to be to show the consequences and relevance of the fractional-order (FO) COVID-19 SIDARTHE differential system, as well as FO required conditions underlying four control measures, called SI,  SD,  SA, and SR. The FO-SIDARTHE system incorporates eight phases of infection: susceptible (S), infected (I), diagnosed (D), ailing (A), recognized (R), threatening (T), healed (H), and extinct (E). Our objective of all these investigations is to use fractional derivatives to increase the accuracy of the SIDARTHE system. A FO-SIDARTHE system has yet to be disclosed, nor has it yet been treated using the strength of stochastic solvers. Stochastic solvers based on the Levenberg-Marquardt backpropagation methodology (L-MB) and neural networks (NNs), specifically L-MBNNs, are being used to analyze a FO-SIDARTHE problem. Three cases having varied values under the same fractional order are being presented to resolve the FO-SIDARTHE system. The statistics employed to provide numerical solutions toward the FO-SIDARTHE system are classified as obeys: 72% toward training, 18% in testing, and 10% for authorization. To establish the accuracy of such L-MBNNs utilizing Adams-Bashforth-Moulton, the numerical findings were compared with the reference solutions.

5.
Eng Anal Bound Elem ; 146: 473-482, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2086162

ABSTRACT

In this study, the nonlinear mathematical model of COVID-19 is investigated by stochastic solver using the scaled conjugate gradient neural networks (SCGNNs). The nonlinear mathematical model of COVID-19 is represented by coupled system of ordinary differential equations and is studied for three different cases of initial conditions with suitable parametric values. This model is studied subject to seven class of human population N(t) and individuals are categorized as: susceptible S(t), exposed E(t), quarantined Q(t), asymptotically diseased IA (t), symptomatic diseased IS (t) and finally the persons removed from COVID-19 and are denoted by R(t). The stochastic numerical computing SCGNNs approach will be used to examine the numerical performance of nonlinear mathematical model of COVID-19. The stochastic SCGNNs approach is based on three factors by using procedure of verification, sample statistics, testing and training. For this purpose, large portion of data is considered, i.e., 70%, 16%, 14% for training, testing and validation, respectively. The efficiency, reliability and authenticity of stochastic numerical SCGNNs approach are analysed graphically in terms of error histograms, mean square error, correlation, regression and finally further endorsed by graphical illustrations for absolute errors in the range of 10-05 to 10-07 for each scenario of the system model.

7.
Inform Med Unlocked ; 33: 101081, 2022.
Article in English | MEDLINE | ID: covidwho-2041834

ABSTRACT

The task of this work is to present the solutions of the mathematical robot system (MRS) to examine the positive coronavirus cases through the artificial intelligence (AI) based Morlet wavelet neural network (MWNN). The MRS is divided into two classes, infected I ( θ ) and Robots R ( θ ) . The design of the fitness function is presented by using the differential MRS and then optimized by the hybrid of the global swarming computational particle swarm optimization (PSO) and local active set procedure (ASP). For the exactness of the AI based MWNN-PSOIPS, the comparison of the results is presented by using the proposed and reference solutions. The reliability of the MWNN-PSOASP is authenticated by extending the data into 20 trials to check the performance of the scheme by using the statistical operators with 10 hidden numbers of neurons to solve the MRS.

8.
Inform Med Unlocked ; 32: 101028, 2022.
Article in English | MEDLINE | ID: covidwho-2041833

ABSTRACT

The current work aims to design a computational framework based on artificial neural networks (ANNs) and the optimization procedures of global and local search approach to solve the nonlinear dynamics of the spread of COVID-19, i.e., the SEIR-NDC model. The combination of the Genetic algorithm (GA) and active-set approach (ASA), i.e., GA-ASA, works as a global-local search scheme to solve the SEIR-NDC model. An error-based fitness function is optimized through the hybrid combination of the GA-ASA by using the differential SEIR-NDC model and its initial conditions. The numerical performances of the SEIR-NDC nonlinear model are presented through the procedures of ANNs along with GA-ASA by taking ten neurons. The correctness of the designed scheme is observed by comparing the obtained results based on the SEIR-NDC model and the reference Adams method. The absolute error performances are performed in suitable ranges for each dynamic of the SEIR-NDC model. The statistical analysis is provided to authenticate the reliability of the proposed scheme. Moreover, performance indices graphs and convergence measures are provided to authenticate the exactness and constancy of the proposed stochastic scheme.

9.
European physical journal plus ; 137(3), 2022.
Article in English | EuropePMC | ID: covidwho-1738004

ABSTRACT

In this study, modeling the COVID-19 pandemic via a novel fractional-order SIDARTHE (FO-SIDARTHE) differential system is presented. The purpose of this research seemed to be to show the consequences and relevance of the fractional-order (FO) COVID-19 SIDARTHE differential system, as well as FO required conditions underlying four control measures, called SI,  SD,  SA, and SR. The FO-SIDARTHE system incorporates eight phases of infection: susceptible (S), infected (I), diagnosed (D), ailing (A), recognized (R), threatening (T), healed (H), and extinct (E). Our objective of all these investigations is to use fractional derivatives to increase the accuracy of the SIDARTHE system. A FO-SIDARTHE system has yet to be disclosed, nor has it yet been treated using the strength of stochastic solvers. Stochastic solvers based on the Levenberg–Marquardt backpropagation methodology (L-MB) and neural networks (NNs), specifically L-MBNNs, are being used to analyze a FO-SIDARTHE problem. Three cases having varied values under the same fractional order are being presented to resolve the FO-SIDARTHE system. The statistics employed to provide numerical solutions toward the FO-SIDARTHE system are classified as obeys: 72% toward training, 18% in testing, and 10% for authorization. To establish the accuracy of such L-MBNNs utilizing Adams–Bashforth–Moulton, the numerical findings were compared with the reference solutions.

10.
Fractals ; : 1, 2021.
Article in English | Academic Search Complete | ID: covidwho-1571439

ABSTRACT

This study is related to explore the Gudermannian neural network (GNN) for solving a nonlinear SITR COVID-19 fractal system by using the optimization efficiencies of a genetic algorithm (GA), a global search technique and sequential quadratic programming (SQP) and a quick local search scheme, i.e. GNN-GA-SQP. The nonlinear SITR COVID-19 fractal system is dependent on four collections: “susceptible”, “infected”, “treatment” and “recovered”. For the optimization procedures through the GNN-GA-SQP, a merit function is constructed using the nonlinear SITR COVID-19 fractal system and its corresponding initial conditions. The description of each collection of the nonlinear SITR COVID-19 fractal system is provided along with comprehensive detail. The comparison of the achieved numerical result performances of each collection of the nonlinear SITR COVID-19 fractal system is performed with the Adams results to verify the exactness of the designed computational GNN-GA-SQP. The statistical processes based on different operators are presented for 30 independent trials using 5 neurons to authenticate the consistency of the designed computational GNN-GA-SQP. Moreover, the graphs of absolute error (AE), performance indices, and convergence measures along with the boxplots and histograms are also plotted to check the stability, exactness and reliability of the designed computational GNN-GA-SQP. [ FROM AUTHOR] Copyright of Fractals is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

11.
Int J Environ Res Public Health ; 18(22)2021 11 20.
Article in English | MEDLINE | ID: covidwho-1524007

ABSTRACT

The current investigations of the COVID-19 spreading model are presented through the artificial neuron networks (ANNs) with training of the Levenberg-Marquardt backpropagation (LMB), i.e., ANNs-LMB. The ANNs-LMB scheme is used in different variations of the sample data for training, validation, and testing with 80%, 10%, and 10%, respectively. The approximate numerical solutions of the COVID-19 spreading model have been calculated using the ANNs-LMB and compared viably using the reference dataset based on the Runge-Kutta scheme. The obtained performance of the solution dynamics of the COVID-19 spreading model are presented based on the ANNs-LMB to minimize the values of fitness on mean square error (M.S.E), along with error histograms, regression, and correlation analysis.


Subject(s)
COVID-19 , Neural Networks, Computer , Humans , Neurons , SARS-CoV-2
12.
Applied Sciences ; 11(18):8549, 2021.
Article in English | ProQuest Central | ID: covidwho-1438476

ABSTRACT

The aim of this work is to present the numerical results of the influenza disease nonlinear system using the feed forward artificial neural networks (ANNs) along with the optimization of the combination of global and local search schemes. The genetic algorithm (GA) and active-set method (ASM), i.e., GA-ASM, are implemented as global and local search schemes. The mathematical nonlinear influenza disease system is dependent of four classes, susceptible S(u), infected I(u), recovered R(u) and cross-immune individuals C(u). For the solutions of these classes based on influenza disease system, the design of an objective function is presented using these differential system equations and its corresponding initial conditions. The optimization of this objective function is using the hybrid computing combination of GA-ASM for solving all classes of the influenza disease nonlinear system. The obtained numerical results will be compared by the Adams numerical results to check the authenticity of the designed ANN-GA-ASM. In addition, the designed approach through statistical based operators shows the consistency and stability for solving the influenza disease nonlinear system.

13.
Fractals ; : 1, 2021.
Article in English | Academic Search Complete | ID: covidwho-1247405

ABSTRACT

In this paper, a discrete fractional Susceptible-Infected-Treatment-Recovered-Susceptible (SITRS) model for simulating the coronavirus (COVID-19) pandemic is presented. The model is a modification to a recent continuous-time SITR model by taking into account the possibility that people who have been infected before can lose their temporary immunity and get reinfected. Moreover, a modification is suggested in the present model to correct the improper assumption that the infection rates of both normal susceptible and old aged/seriously diseased people are equal. This modification complies with experimental data. The equilibrium points for the proposed model are found and results of thorough stability analysis are discussed. A full numerical simulation is carried out and gives a better analysis of the disease spread, influences of model’s parameters, and how to control the virus. Comparisons with clinical data are also provided. [ABSTRACT FROM AUTHOR] Copyright of Fractals is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

14.
Alexandria Engineering Journal ; 2021.
Article in English | ScienceDirect | ID: covidwho-1056142

ABSTRACT

The present study is related to present a novel design of intelligent solvers with a neuro-swarm heuristic integrated with interior-point algorithm (IPA) for the numerical investigations of the nonlinear SITR fractal system based on the dynamics of a novel coronavirus (COVID-19). The mathematical form of the SITR system using fractal considerations defined in four groups, ‘susceptible (S)’, ‘infected (I)’, ‘treatment (T)’ and ‘recovered (R)’. The inclusive detail of each group along with the clarification to formulate the manipulative form of the SITR nonlinear model of novel COVID-19 dynamics is presented. The solution of the SITR model is presented using the artificial neural networks (ANNs) models trained with particle swarm optimization (PSO), i.e., global search scheme and prompt fine-tuning by IPA, i.e., ANN-PSOIPA. In the ANN-PSOIPA, the merit function is expressed for the impression of mean squared error applying the continuous ANNs form for the dynamics of SITR system and training of these networks are competently accompanied with the integrated competence of PSOIPA. The exactness, stability, reliability and prospective of the considered ANN-PSOIPA for four different forms is established via the comparative valuation from of Runge-Kutta numerical solutions for the single and multiple executions. The obtained outcomes through statistical assessments verify the convergence, stability and viability of proposed ANN-PSOIPA.

15.
Fractals ; 28(8):N.PAG-N.PAG, 2020.
Article in English | Academic Search Complete | ID: covidwho-1021111

ABSTRACT

The aim of the present paper is to state a simplified nonlinear mathematical model to describe the dynamics of the novel coronavirus (COVID-19). The design of the mathematical model is described in terms of four categories susceptible (S) , infected (I) , treatment (T) and recovered (R) , i.e. SITR model with fractals parameters. These days there are big controversy on if is needed to apply confinement measure to the population of the word or if the infection must develop a natural stabilization sharing with it our normal life (like USA or Brazil administrations claim). The aim of our study is to present different scenarios where we draw the evolution of the model in four different cases depending on the contact rate between people. We show that if no confinement rules are applied the stabilization of the infection arrives around 300 days affecting a huge number of population. On the contrary with a contact rate small, due to confinement and social distancing rules, the stabilization of the infection is reached earlier. [ABSTRACT FROM AUTHOR] Copyright of Fractals is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

16.
Symmetry ; 12(10):1628, 2020.
Article | MDPI | ID: covidwho-813275

ABSTRACT

The present study aims to design stochastic intelligent computational heuristics for the numerical treatment of a nonlinear SITR system representing the dynamics of novel coronavirus disease 2019 (COVID-19). The mathematical SITR system using fractal parameters for COVID-19 dynamics is divided into four classes;that is, susceptible (S), infected (I), treatment (T), and recovered (R). The comprehensive details of each class along with the explanation of every parameter are provided, and the dynamics of novel COVID-19 are represented by calculating the solution of the mathematical SITR system using feed-forward artificial neural networks (FF-ANNs) trained with global search genetic algorithms (GAs) and speedy fine tuning by sequential quadratic programming (SQP)—that is, an FF-ANN-GASQP scheme. In the proposed FF-ANN-GASQP method, the objective function is formulated in the mean squared error sense using the approximate differential mapping of FF-ANNs for the SITR model, and learning of the networks is proficiently conducted with the integrated capabilities of GA and SQP. The correctness, stability, and potential of the proposed FF-ANN-GASQP scheme for the four different cases are established through comparative assessment study from the results of numerical computing with Adams solver for single as well as multiple autonomous trials. The results of statistical evaluations further authenticate the convergence and prospective accuracy of the FF-ANN-GASQP method.

SELECTION OF CITATIONS
SEARCH DETAIL